IDS: Thermodynamic-kinetic-empirical tool for modelling of solidification, microstructure and material properties

نویسندگان

  • J. Miettinen
  • S. Louhenkilpi
  • H. Kytönen
  • J. Laine
چکیده

IDS (InterDendritic Solidification) is a thermodynamic–kinetic–empirical tool for simulation of solidification phenomena of steels including phase transformations from melt down to room temperature. In addition, important thermophysical material properties (enthalpy, thermal conductivity, density, etc.) are calculated. The model has been developed in the Laboratory of Metallurgy, Helsinki University of Technology, Finland, since 1984. IDS includes two main modules, the IDS module and the ADC (Austenite DeComposition) module. IDS module simulates the solidification phenomena from liquid down to 1000 ◦C and ADC the austenite decomposition down to room temperature. Both modules have their own recommended composition ranges. The IDS module is based on the so-called sharp interface concept. The ADC is mainly statistical based on empirical CCT (Continuous Cooling Transformation) diagrams. IDS tool is also coupled with the thermodynamic programmer’s library, called ChemApp, developed by a German company, GTT-Technologies. This coupled package is used to simulate among other things multiphase inclusions during solidification. The present paper summarises the features of the IDS tool including the coupling with the ChemApp library. © 2009 IMACS. Published by Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Removal of Inclusions in Continuous Casting

Continuous casting is the central process phase with strong influence on the final quality of the steel products. Several different models for continuous casting have been developed at the Laboratory of Metallurgy at Helsinki University of Technology (TKK) concerning e.g. fluid flow, heat transfer, thermodynamic equilibria and statistical approaches. In this paper the inhouse solidification mod...

متن کامل

The effect of bonding temperature on the microstructure and mechanical properties of 939 super alloy by transient liquid phase bonding method

In this research, the effect of bonding temperature on the microstructure and mechanical properties of Inconel 939 super alloy by transient liquid phase bonding method. For this purpose, the middle layer of MBF20 with a thickness of 50 microns and three temperatures of 1060 °C, 1120 °C, 1180 °C and a time of 45 minutes have been used. In order to evaluate the microstructure, a scanning electron...

متن کامل

The effect of bonding temperature on the microstructure and mechanical properties of 939 super alloy by transient liquid phase bonding method

In this research, the effect of bonding temperature on the microstructure and mechanical properties of Inconel 939 super alloy by transient liquid phase bonding method. For this purpose, the middle layer of MBF20 with a thickness of 50 microns and three temperatures of 1060 °C, 1120 °C, 1180 °C and a time of 45 minutes have been used. In order to evaluate the microstructure, a scanning electron...

متن کامل

Thermodynamic phase-field model for microstructure with multiple components and phases: the possibility of metastable phases.

A diffuse-interface model for microstructure with an arbitrary number of components and phases was developed from basic thermodynamic and kinetic principles and formalized within a variational framework. The model includes a composition gradient energy to capture solute trapping and is therefore suited for studying phenomena where the width of the interface plays an important role. Derivation o...

متن کامل

Modelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool

Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2010